本站所有资源均为高质量资源,各种姿势下载。
车间调度(JSP,Job Shop Scheduling Problem)是一个经典的生产调度问题,涉及到一组作业在一组机器上的调度安排,使得满足作业的顺序和机器的约束条件的同时,最小化完成所有作业的时间。下面是一个简单的基于遗传算法的 MATLAB 实现示例。
function [bestSchedule, bestTime] = jspGeneticAlgorithm(jobs, machines, populationSize, generations)
numJobs = length(jobs);
numMachines = length(machines);
% 生成初始种群
population = zeros(populationSize, numJobs*numMachines);
for i = 1:populationSize
population(i, :) = randperm(numJobs*numMachines);
end
% 开始迭代
for gen = 1:generations
% 计算适应度
fitness = zeros(1, populationSize);
for i = 1:populationSize
schedule = reshape(population(i, :), numJobs, numMachines);
fitness(i) = calculateMakespan(schedule, jobs, machines);
end
% 选择父代
[sortedFitness, indices] = sort(fitness);
parents = population(indices(1:round(populationSize/2)), :);
% 交叉和变异
offspring = zeros(size(parents));
for i = 1:2:populationSize/2
parent1 = parents(i, :);
parent2 = parents(i+1, :);
crossoverPoint = randi([1, numJobs*numMachines-1]);
offspring(i, :) = [parent1(1:crossoverPoint), parent2(crossoverPoint+1:end)];
offspring(i+1, :) = [parent2(1:crossoverPoint), parent1(crossoverPoint+1:end)];
end
% 更新种群
population = [parents; offspring];
end
% 选择最佳解
bestSchedule = reshape(population(1, :), numJobs, numMachines);
bestTime = calculateMakespan(bestSchedule, jobs, machines);
end
function makespan = calculateMakespan(schedule, jobs, machines)
numJobs = length(jobs);
numMachines = length(machines);
machineTimes = zeros(numJobs, numMachines);
jobTimes = zeros(numJobs, 1);
for i = 1:numJobs
for j = 1:numMachines
job = schedule(i, j);
machine = machines(job);
if j == 1
machineTimes(i, j) = jobTimes(i);
else
machineTimes(i, j) = max(machineTimes(i, j-1), jobTimes(i));
end
machineTimes(i, j) = machineTimes(i, j) + jobs(job, machine);
jobTimes(i) = machineTimes(i, j);
end
end
makespan = max(jobTimes);
end
在这个示例中,我们使用了基本的遗传算法来解决车间调度问题。注释和函数名已经对代码进行了详细的说明。你可以将这个示例作为起点,根据实际情况进行扩展和优化,例如改进遗传算法的选择、交叉和变异操作,或者尝试其他优化算法如禁忌搜索、模拟退火等。